一、Hadoop 组成

Hadoop 的组成

文章目录

1. Hadoop1.x、2.x、3.x区别

在 Hadoop1.x 时代 ,Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大。
在Hadoop2.x时代,增加了Yarn 。 Yarn 只负责资 源 的 调 度 ,MapReduce 只负责运算 。
Hadoop3.x在组成上没有变化。

2. HDFS 架构概述

Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。

1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。

2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

3. YARN 架构概述

Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者, 是 Hadoop 的资源管理器。
1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大
3)ApplicationMaster(AM):单个任务运行的老大
2)NodeManager(NM):单个节点服务器资源老大
4)Container:容器,相当一台独立的服务器,里面封装了任务运行所需要的资源,如内存、CPU、磁盘、网络等。

4. MapReduce 架构概述

MapReduce 将计算过程分为两个阶段:Map 和 Reduce
1)Map 阶段并行处理输入数据
2)Reduce 阶段对 Map 结果进行汇总

5. HDFS、YARN、MapReduce 三者关系

  • MapTask检索各自机器上的数据
  • 检索到数据后,ReduceTask将检索到的数据写回到磁盘上,并告知NameNode该数据存放到位置

6. 大数据技术生态体系

图中涉及的技术名词解释如下:
1) Sqoop: Sqoop 是一款开源的工具,主要用于在 Hadoop、 Hive 与传统的数据库 (MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。
2) Flume: Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume 支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统;
4)Spark: Spark 是当前最流行的开源大数据内存计算框架。可以基于 Hadoop 上存储的大数据进行计算。
5)Flink:Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
6)Oozie:Oozie 是一个管理 Hadoop 作业(job)的工作流程调度管理系统。
7) Hbase: HBase 是一个分布式的、面向列的开源数据库。 HBase 不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开
发专门的 MapReduce 应用,十分适合数据仓库的统计分析。
9) ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

7. 推荐系统框架图